2/89 To meet design criteria, small ball bearings must
bounce through an opening of limited size at the top
of their trajectory when rebounding from a heavy
plate as shown. Calculate the angle 6 made by the re- 4-00
bound velocity with the horizontal and the velocity v B
of the balls as they pass through the opening. Soo

Ans. 6 = 68.2° v = 1.253 m/s
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Article 2/5 Normal and Tangential Coordinates (n-t) 55

2/5 NormAL AND TANGENTIAL COORDINATES (n-f)

As we mentioned in Art. 2/1, one of the common descriptions of
curvilinear motion uses path variables, which are measurements made
along the tangent £ and normal n to the path of the particle. These coor-
dinates provide a very natural description for curvilinear motion and
are frequently the most direct and convenient coordinates to use. The
n- and i-coordinates are considered to move along the path with the par-
ticle, as seen in Fig. 2/9 where the particle advances from A to B to C.
The positive direction for n at any position is always taken toward the
center of curvature of the path. As seen from Fig. 2/9, the positive
n-direction will shift from one side of the curve to the other side if the
curvature changes direction.

Velocity and Acceleration

We now use the coordinates n and ¢ to describe the velocity v and
acceleration a which were introduced in Art. 2/3 for the curvilinear mo-
tion of a particle. For this purpose, we introduce unit vectors e, in the
n-direction and e, in the #-direction, as shown in Fig. 2/10a for the posi-
tion of the particle at point A on its path. During a differential incre-

ment of time d¢, the particle moves a differential distance ds along the |
curve from A to A", With the radius of curvature of the path at this posi- |

tion designated by p, we see that ds = p dB, where § is in radians. It is
unnecessary to consider the differential change in p between A and A’
because a higher-order term would be introduced which disappears in
the limit. Thus, the magnitude of the velacity can be written v = ds/dt =
p dp/dt, and we can write the velocity as the vector

e, = pfe, @

v u

The acceleration a of the particle was defined in Art. 2/3 as a =
dv/dt, and we observed from Fig. 2/5 that the acceleration is a vector
which reflects both the change in magnitude and the change in direc-
tion of v. We now differentiate v in Eq. 2/7 by applying the ordinary
rule for the differentiation of the product of a scalar and a vector*
and get

_dv _de)
dt dt

=ve, + Ue, (2/8)

where the unit vector e, now has a nonzero derivative because its direc-
tion changes.

To find é, we analyze the change in e, during a differential incre-
ment of motion as the particle moves from A to A’ in Fig. 2/10a. The
unit vector e, correspondingly changes to e;, and the vector difference
de, is shown in part b of the figure. The vector de, in the limit has a
magnitude equal to the length of the arc |e, dB = dB obtained by
swinging the unit vector e; through the angle dj expressed in radians.

*See Art. C/7 of Appendix C.
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The direction of de, is given by e,. Thus, we can write de, = e, dB. Di-
viding by dB gives

de,
—=e

-

n

Dividing by dt gives de,/dt = (dg/di)e,, which can be written

With the substitution of Eq. 2/9 and ﬁ from the relation v = pg, Eq.
2/8 for the acceleration becomes

v? ;
a = F e, + ve, (2/10)

2
[y

where a, =% = pp2 =108

)

a=0=3§

a = Ja,?+a,

We may also note that a, = 0 = d(pg)/dt = p§ + 8. This relation, how-
ever, finds little use because we seldom have reason to compute p.

Geometric Interpretation

Full understanding of Eq. 2/10 comes only when we clearly see the
geometry of the physical changes it describes. Figure 2/10¢ shows the ve-
locity vector v when the particle is at A and v’ when it is at A’. The vector
change in the velocity is dv, which establishes the direction of the acceler-
ation a. The n-component of dv is labeled dv,, and in the limit its magni-
tude equals the length of the arc generated by swinging the vector v as a
radius through the angle dB. Thus, |[dv,| = v dB and the n-component of
acceleration is @, = |dv,|/dt = v(dB/dt) = v as before. The t-component
of dv is labeled dv,, and its magnitude is simply the change dv in the mag-
nitude or length of the velocity vector. Therefore, the #-component of ac-
celeration is @, = dv/dt = ¢ = § as before. The acceleration vectors
resulting from the corresponding vector changes in velocity are shown in
Fig. 2/10c.

It is especially important to observe that the normal component of
acceleration a,, is always directed toward the center of curvature C. The
tangential component of acceleration, on the other hand, will be in the
positive f-direction of motion if the speed v is increasing and in the nega-
tive ¢-direction if the speed is decreasing. In Fig. 2/11 are shown
schematic representations of the variation in the acceleration vector for
a particle moving from A to B with (@) increasing speed and (b) decreas-
ing speed. At an inflection point on the curve, the normal acceleration
v¥/p goes to zero because p becomes infinite.
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Circular Motion

Circular motion is an important special case of plane curvilinear
motion where the radius of curvature p becomes the constant radius r of
the circle and the angle S is replaced by the angle f# measured from any
convenient radial reference to OP, Fig. 2/12. The velocity and the accel-
eration components for the circular motion of the particle P become

=
a, =vr=ré2=v (2/11)
a,=0=rf

We find repeated use for Egs. 2/10 and 2/11 in dynamics, so these
relations and the principles behind them should be mastered.

Courtesy of Ken Hester

An example of uniform circular motion is this car moving with constant speed
around a skidpad, which is a circular roadway with a diameter of about 200 feet.
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Sample Problem 2/7

To anticipate the dip and hump in the road, the driver of a car applies her
brakes to produce a uniform deceleration. Her speed is 100 km/h at the bottom A of
the dip and 50 km/h at the top C of the hump, which is 120 m along the road from
A. If the passengers experience a total acceleration of 3 m/s? at A and if the radius of
curvature of the hump at C is 150 m, calculate (a) the radius of curvature p at A, (b)
the acceleration at the inflection point B, and (c) the total acceleration at C.

Solution. The dimensions of the car are small compared with those of the
path, so we will treat the car as a particle. The velocities are

e () on ) -

h /\3600 s km
_ s 1000 _
ve = 60 gons = 18.89 mis

We find the constant deceleration along the path from

[jvciv=J-a‘ds] fucvdv=a,f:ds

Va

_ (13.89)% - (27.8)2 _

2 e - — 2
2(120) Stlog

a; = %(DC = UAz) =

(a) Condition at A. With the total acceleration given and a, determined, we
can easily compute a, and hence p from

la?=a?+a? =% -(2412=319 q = 1785 m/s
la, = v¥p) p=v¥a, = (27.8)%1.785 = 432 m Ans.

(b) Condition at B. Since the radius of curvature is infinite at the inflection
point, a, = 0 and

a =a,= —2.41 m/s? Ans.

{c) Condition gt C. The normal acceleration becomes
la, = v¥/p) a, = (13.89)%/150 = 1.286 m/s?

With unit vectors e, and e, in the n- and #-directions, the acceleration may be
written

a = 1.286e, — 2.4le, m/s?
where the magnitude of a is
[a = Ja,2+ a2 a = /(1.286) + (-2.41)% = 2.73 m/s? Ans.

The acceleration vectors representing the conditions at each of the three
points are shown for clarification.

GO m C

W
& B 151 m

Helpful Hint

(D Actually, the radius of curvature to
the road differs by about 1 m from
that to the path followed by the cen-
Ler of mass of the passengers, but we
have neglected this relatively small
difference.

+n

|

|

a=3mis® |
e a, = 1.785 m/s?

S
- "‘\,A -

- +

-

a=a,=-241 m/s?
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Sample Problem 2/8

—

A certain rocket maintains a horizontal attitude of its axis during the pow- - - % _U;.Fm fi/sec?
ered phase of its flight at high altitude. The thrust imparts a horizontal compo- Oz /i “-1%}5 12,000 mi/hr
nent of acceleration of 20 ft/sec®, and the downward acceleration component is 8 AT y
the acceleration due to gravity at that altitude, which is g = 30 ft/sec’. At the in- ;‘ 3
stant represented, the velocity of the mass center G of the rocket along the 157 / lg = 30 ft/sec”
direction of its trajectory is 12,000 mi/hr. For this position determine (a) the ra- f
dius of curvature of the flight trajectory, (b) the rate at which the speed v is in- )Z
creasing, (c) the angular rate g of the radial line from G to the center of bl

curvature €, and (d) the vector expression for the total acceleration a of the

rocket.

Solution. We observe that the radius of curvature appears in the expression

for the normal component of acceleration, so we use n- and {-coordinates to de- Helpful Hints

scribe the motion of G. The n- and t-components of the total acceleration are ob- '

tained by resolving the given horizontal and vertical accelerations into their n- (1) Alternatively, we could find the re-
and {-components and then combining. From the figure we get sultant acceleration and then re-

solve it into n- and f-components
a, = 30 cos 15° — 20 sin 15° ={ 23.8 ft/sec?)

a, = 30 sin 15° + 20 cos 15° = 27.1 ft/sec?

(a) We may now compute the radius of curvature from

2
- 2 12,000)(44/30 o o : ; .. .
e, = Uzr!p] p= ;f = % = 13.01(109) ft Ans. (2} To convert from mi‘hr to ft/sec, multi-
" : : 5280 ft/mi 44 ft/sec S
ply by -—-- ——— which
3600 sec’hr 30 mi/hy
is easily remembered, as 30 mishr is

(B) The rate at which v is increasing is simply the t-component of acceleration. thie semie ad 44 felsee:

[0 =a,] U = 27.1 ft/sec? Ans,

—_—

(c) The angular rate 8 of line GC depends on v and p and is given by

a, = 20 ft/sec?
. - e x

o - _12,000(44/30) g o
v = pB] B =uvlp T 13.53(10™ %) rad/sec Ans. P
| =:'r‘-..i e
2
a, = E
(d) With unit vectors e, and e, for the n- and {-directions, respectively, the total 4
acceleration becomes e, /

a = 23.8e, + 27.le, ft/sec? Ans.




2/105 The car travels at a constant speed from the bot-
tom A of the dip to the top B of the hump, If the ra-
dius of curvature of the road at A is py = 120 m and
the car acceleration at A is 0.4g, determine the car
speed v. If the acceleration at B must be limited to
(0.25g, determine the minimum radius of curvature
pp of the road at B.

Ans.v =216 m/s, pg=190.4m

M
B t /0 ;IZ,O

A
J o o Lla
{ ) | ‘
— N2 A

AL =0
f‘/
J 9 9/ s
01 :& L/ o - OL{K _
z /ﬂ’e > 01 9X7, oo —o/6)
! ——

pa

2

e 0 )
= Oy 5 o oesxgel= 200
/%*O/G’ [064-0/6

T
A
ﬁs " 025 X9l

—O/é::. (90/3 ™

—= g2 Joraxaslifer-96) -




2/109 The figure shows two possible paths for negotiating
an unbanked turn on a horizontal portion of a race
course. Path A-A follows the centerline of the road
and has a radius of curvature py, = 85 m, while path
B-B uses the width of the road to good advantage in
increasing the radius of curvature to pg = 200 m. If
the drivers limit their speeds in their curves so that
the lateral acceleration does not exceed 0.8g, deter-
mine the maximum speed for each path.
Ans. vy = 25.8 m/s,vg = 39.6 m/s ap s o3 )(9/'5 | =

2
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2/115 At the bottom A of the vertical inside loop, the
magnitude of the total acceleration of the airplane
is 3g. If the airspeed is 800 km/h and is increasing
at the rate of 20 km/h per second, calculate the ra-

dius of curvature p of the path at A.
Ans.p = 1709 m

Oy =3 X931
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2/122 The design of a camshaft-drive system of a four-

cylinder automobile engine is shown. As the engine
is revved up, the belt speed v changes uniformly
from 3 m/s to 6 m/s over a two-second interval. Cal-
culate the magnitudes of the accelerations of points
P, and P, halfway through this time interval.
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