2/3 PLANE CURVILINEAR MOTION

We now treat the motion of a particle along a curved path which lies
in a single plane. This motion is a special case of the more general three-
dimensional motion introduced in Art. 2/1 and illustrated in Fig. 2/1. If we
let the plane of motion be the x-y plane, for instance, then the coordinates
z and ¢ of Fig. 2/1 are both zero, and R becomes the same as r. As men-
tioned previously, the vast majority of the motions of points or particles
encountered in engineering practice can be represented as plane motion.

Before pursuing the description of plane curvilinear motion in any
specific set of coordinates, we will first use vector analysis to describe
the motion, since the results will be independent of any particular coor-
dinate system. What follows in this article constitutes one of the most
basic concepts in dynamics, namely, the time derivative of a vector.
Much analysis in dynamics utilizes the time rates of change of vector
quantities. You are therefore well advised to master this topic at the
outset because you will have frequent occasion to use it.

Consider now the continuous motion of a particle along a plane curve
as represented in Fig. 2/5. At time ¢ the particle is at position A, which is
located by the position vector ¥ measured from some convenient fixed ori-
gin O. If both the magnitude and direction of r are known at time #, then
the position of the particle is completely specified. At time ¢ + A¢, the par-
ticle is at A’ located by the position vector ¥ + Ar. We note, of course,
that this combination is vector addition and not scalar addition. The dis-
placement of the particle during time At is the vector Ar which represents
the vector change of position and is clearly independent of the choice of
origin. If an origin were chosen at some different location, the position
vector r would be changed, but Ar would be unchanged. The distance ac-
tually traveled by the particle as it moves along the path from A to A’ is
the scalar length As measured along the path. Thus, we distinguish be-
tween the vector displacement Ar and the scalar distance As.

Velocity

The average velocity of the particle between A and A’ is defined as
Vay = Ar/A¢, which is a vector whose direction is that of Ar and whose
magnitude is the magnitude of Ar divided by A¢. The average speed of
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the particle between A and A’ is the scalar quotient As/A¢. Clearly, the
magnitude of the average velocity and the speed approach one another
as the interval At decreases and A and A’ become closer together.

The instantaneous velocity v of the particle is defined as the limiting
value of the average velocity as the time interval approaches zero. Thus,
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We observe that the direction of Ar approaches that of the tangent to
the path as A¢ approaches zero and, thus, the velocity v is always a vec-
tor tangent to the path.

We now extend the basic definition of the derivative of a scalar
quantity to include a vector quantity and write

=3 (2/4)

The derivative of a vector is itself a vector having both a magnitude and
a direction. The magnitude of v is called the speed and is the scalar

v=|v|=@=é
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At this point we make a careful distinction between the magnitude
of the dertvative and the derivative of the magnitude. The magnitude of
the derivative can be written in any one of the several ways |dr/dt| =
|¥| = § = |[v| = v and represents the magnitude of the velocity, or the
speed, of the particle. On the other hand, the derivative of the magni-
tude is written d|r|/dt = dr/dt = r, and represents the rate at which the
length of the position vector r is changing. Thus, these two derivatives
have two entirely different meanings, and we must be extremely careful
to distinguish between them in our thinking and in our notation. For
this and other reasons, you are urged to adopt a consistent notation for
handwritten work for all vector quantities to distinguish them from
scalar quantities. For simplicity the underline v is recommended. Other
handwritten symbols such as 7, p, and & are sometimes used.

With the concept of velocity as a vector established, we return to Fig.
2/5 and denote the velocity of the particle at A by the tangent vector v and
the velocity at A’ by the tangent v'. Clearly, there is a vector change in
the velocity during the time At. The velocity v at A plus (vectorially) the
change Av must equal the velocity at A’, so we can write v — v = Av. In-
spection of the vector diagram shows that Av depends both on the change
in magnitude (length) of v and on the change in direction of v. These two
changes are fundamental characteristics of the derivative of a vector.

Acceleration

The average acceleration of the particle between A and A’ is defined
as Av/At, which is a vector whose direction is that of Av. The magnitude
of this average acceleration is the magnitude of Av divided by At.




The instantaneous acceleration a of the particle is defined as the
limiting value of the average acceleration as the time interval ap-
proaches zero. Thus,
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By definition of the derivative, then, we write

et (2/5)

As the interval A¢ becomes smaller and approaches zero, the direction of
the change Av approaches that of the differential change dv and, thus,
of a. The acceleration a, then, includes the effects of both the change in
magnitude of v and the change of direction of v. It is apparent, in gen-
eral, that the direction of the acceleration of a particle in curvilinear
motion is neither tangent to the path nor normal to the path. We do ob-
serve, however, that the acceleration component which is normal to the
path points toward the center of curvature of the path.

Visualization of Motion

A further approach to the visualization of acceleration is shown in
Fig. 2/6, where the position vectors to three arbitrary positions on the
path of the particle are shown for illustrative purpose. There is a velocity
vector tangent to the path corresponding to each position vector, and the
relation is v = r. If these velocity vectors are now plotted from some ar-
bitrary point C, a curve, called the hodograph, is formed. The derivatives
of these velocity vectors will be the acceleration vectors a = v which are
tangent to the hodograph. We see that the acceleration has the same re-
lation to the velocity as the velocity has to the position vector.

The geometric portrayal of the derivatives of the position vector r
and velocity vector v in Fig. 2/5 can be used to describe the derivative of
any vector quantity with respect to ¢ or with respect to any other scalar
variable. Now that we have used the definitions of velocity and accelera-
tion to introduce the concept of the derivative of a vector, it is important
to establish the rules for differentiating vector quantities. These rules
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are the same as for the differentiation of scalar quantities, except for the
case of the cross product where the order of the terms must be pre-
served. These rules are covered in Art. C/7 of Appendix C and should be
reviewed at this point.

Three different coordinate systems are commonly used for describing
the vector relationships for curvilinear motion of a particle in a plane: rec-
tangular coordinates, normal and tangential coordinates, and polar coor-
dinates. An important lesson to be learned from the study of these
coordinate systems is the proper choice of a reference system for a given
problem. This choice is usually revealed by the manner in which the mo-
tion is generated or by the form in which the data are specified. Each of
the three coordinate systems will now be developed and illustrated.

2/4 RECTANGULAR COORDINATES (X-y)

This system of coordinates is particularly useful for describing mo-
tions where the x- and y-components of acceleration are independently
generated or determined. The resulting curvilinear motion is then ob-
tained by a vector combination of the x- and y-components of the posi-
tion vector, the velocity, and the acceleration.

Vector Representation

The particle path of Fig. 2/5 is shown again in Fig. 2/7 along with
x- and y-axes. The position vector r, the velocity v, and the acceleration
a of the particle as developed in Art. 2/3 are represented in Fig. 2/7 to-
gether with their x- and y-components. With the aid of the unit vectors
i and j, we can write the vectors r, v, and a in terms of their x- and
y-components. Thus,

r=xi+ty
v=0r=xi+y) (2/6)

a=v=i=¥+jj

As we differentiate with respect to time, we observe that the time deriv-
atives of the unit vectors are zero because their magnitudes and direc-
tions remain constant. The scalar values of the components of v and a
are merely v, = %, v, = y and @, = U, = X, a, = 0, = J. (As drawn in
Fig. 2/7, a, is in the negative x-direction, so that ¥ would be a negative
number.)

As observed previously, the direction of the velocity is always tan-
gent to the path, and from the figure it is clear that
tan & = Oy
U.\’

v¥=v2+02 v=Juv2+u2

a? = a,,2 + ay2 a= V"EF B ay
If the angle 6 is measured counterclockwise from the x-axis to v for the
configuration of axes shown, then we can also observe that dy/dx =
tan 0 = v,/v,.

Figure 2/7




If the coordinates x and y are known independently as functions of
time, x = f,(f) and y = f5(¢), then for any value of the time we can com-
bine them to obtain r. Similarly, we combine their first derivatives x
and y to obtain v and their second derivatives ¥ and ¥ to obtain a. On
the other hand, if the acceleration components a, and a, are given as
functions of the time, we can integrate each one separately with re-
spect to time, once to obtain v, and v, and again to obtain x = f,(¢) and
y = f3(t). Elimination of the time ¢ between these last two parametric
equations gives the equation of the curved path y = f(x).

From the foregoing discussion we can see that the rectangular-
coordinate representation of curvilinear motion is merely the superposi-
tion of the components of two simultaneous rectilinear motions in the
x- and y-directions. Therefore, everything covered in Art. 2/2 on rectilin-
ear motion can be applied separately to the x-motion and to the y-motion.

Projectile Motion

An important application of two-dimensional kinematic theory is
the problem of projectile motion. For a first treatment of the subject,
we neglect aerodynamic drag and the curvature and rotation of the
earth, and we assume that the altitude change is small enough so that
the acceleration due to gravity can be considered constant. With these
assumptions, rectangular coordinates are useful for the trajectory
analysis.

For the axes shown in Fig. 2/8, the acceleration components are

a, =0 o= —f

Integration of these accelerations follows the results obtained previ-
ously in Art. 2/2a for constant acceleration and yields

v, = (V) v, = (v,)o — &t
x = xg + (U)ot ¥y =y + W)t - %gtz
vy2 = (Uy)O2 - 280y = Yo)

In all these expressions, the subscript zero denotes initial conditions,
frequently taken as those at launch where, for the case illustrated,
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xo = ¥o = 0. Note that the quantity g is taken to be positive throughout
this text.

We can see that the x- and y-motions are independent for the simple
projectile conditions under consideration. Elimination of the time ¢ be-
tween the x- and y-displacement equations shows the path to be parabolic
(see Sample Problem 2/6). If we were to introduce a drag force which de-
pends on the speed squared (for example), then the x- and y-motions would
be coupled (interdependent), and the trajectory would be nonparabolic.

When the projectile motion involves large velocities and high alti-
tudes, to obtain accurate results we must account for the shape of the
projectile, the variation of g with altitude, the variation of the air den-
sity with altitude, and the rotation of the earth. These factors introduce
considerable complexity into the motion equations, and numerical inte-
gration of the acceleration equations is usually necessary.

Herman Eisenbeiss/Photo Researchers, Inc

This stroboscopic photograph of a bouncing ping-pong ball suggests not
only the parabolic nature of the path, but also the fact that the speed is
lower near the apex.
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Sample Problem 2/5

The curvilinear motion of a particle is defined by v, = 50 — 16t and y =
100 — 4¢3, where v, is in meters per second, y is in meters, and ¢ is in seconds.
It is also known that x = 0 when ¢ = 0. Plot the path of the particle and deter-
mine its velocity and acceleration when the position y = 0 is reached.

Solution. The x-coordinate is obtained by integrating the expression for v,
and the x-component of the acceleration is obtained by differentiating v,. Thus,

x 3
de:fu,dt] f dx=f(50—1ez)dt x =50t~ 82m
0 0

o, =] =LG0-160 .= -16mis?

The y-components of velocity and acceleration are

fv, = ] b= 210048 v, = -8tmis
et il s
a, =0,] a, = @ (—8t) a, = ~8mfs

We now calculate corresponding values of x and y for various values of ¢ and
plot x against y to obtain the path as shown.
Wheny = 0,0 = 100 — 4¢2 so ¢ = 5 s. For this value of the time, we have

v, = 50 — 16(5) = ~30 m/s
v, = —8(5) = —40 m/s
v =(-30)? + (—40)* = 50 m/s

a=/(-16) + (—8)2 = 17.89 m/s?

The velocity and acceleration components and their resultants are shown on the
separate diagrams for point A, where y = 0. Thus, for this condition we may
write

v = —30i — 40j m/s Ans.

a= —16i — 8j m/s? Ans.
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Helpful Hint
We obse rve that l]l“ \jr':z)l'll\.' vector lies
along the iangent to the path as it
should, but that the acceleration vector
18 not tange to the path. Note espe-
cially that the aceeleration vector has a
component that points toward the in-

curved path. We concluded

from our diagram in Fig. 2/5 that it is

side of the

impossible for the acceleration to have a
component that points toward the out-

side of the curve
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Sample Problem 2/6

A rocket has expended all its fuel when it reaches position A, where it has a
velocity of u at an angle 6 with respect to the horizontal. It then begins unpow-
ered flight and attains a maximum added height & at position B after traveling a
horizontal distance s from A. Determine the expressions for & and s, the time ¢ of
flight from A to B, and the equation of the path. For the interval concerned, as-
sume a flat earth with a constant gravitational acceleration g and neglect any at-
mospheric resistance.

Solution. Since all motion components are directly expressible in terms of
horizontal and vertical coordinates, a rectangular set of axes x-y will be em-

) ployed. With the neglect of atmospheric resistance, a, = 0 and a, = —g, and the

resulting motion is a direct superposition of two rectilinear motions with con-
stant acceleration. Thus,

' 3
[dx = v, dt] x=[ u cos 0 dt x =utcos b
0
vy, t
[dv, = a,d!] fu SiMdvy = fo (—g)dt vy =using —gt
; 1
[dy = v, dt] y=j0(usin9-—g1)dt y = utsin 6 — 588>

Position B is reached when v, = 0, which occurs for 0 = u sin 6 — gt or
t = (usin 0)/g Ans.

Substitution of this value for the time into the expression for y gives the maxi-
mum added altitude

ing\ . 1 {using)? u? sin? @
() s L[] ot
8 25\ g 2g
The horizontal distance is seen to be
: 2
s=u(——-us;n0-)oos9 gm X B0 821220 Ans.

which is clearly a maximum when @ = 45°. The equation of the path is obtained
by eliminating ¢ from the expressions for x and y, which gives

2
y=xtan0—gise026 Ans,
2u2

This equation describes a vertical parabola as indicated in the figure.
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Helpful Hints
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) If atmospheric resistance were to be

Note that this problem is simply the
description of projectile motion ne-
glecting atmospheric resistance
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We see that the total range and time
of flight for a projectile fired above a
horizontal plane would be twice the
respective values of s and ¢ given

here.

accounted for, the dependency of the
acceleration \"nm‘.[’»unn-:ﬂ.: on the ve
locity would have to be established
hefore an integration of the equa-
tions could be carried out. This be-

comes a much more difficult problem
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2/72 With what minimum horizontal velocity « can a boy
throw a rock at A and have it just clear the obstruc-
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2/79 A projectile is launched from point A with the initial
conditions shown in the figure. Determine the slant
distance s which locates the point B of impact. Cal-
culate the time of flight ¢.

Ans.s = 1057 m, ¢ = 19.50 s
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2/85 A projectile is launched with an initial speed of 200
m/s at an angle of 60° with respect to the horizontal.
Compute the range R as measured up the incline.

93-¥ Ans. R = 2970 m
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2/87 The muzzle velocity of a long-range rifle at A is u =
400 m/s. Determine the two angles of elevation #

which will permit the projectile to hit the mountain
target B.

Ans. 0, = 26.1°, 0, = 80.6°
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