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4 Chapter 1

Introduction to Dynamics

Robot hand

on a sound basis. Newton’s famous work was published in the first edi-
tion of his Principia,* which is generally recognized as one of the great-
est of all recorded contributions to knowledge. In addition to stating the
laws governing the motion of a particle, Newton was the first to cor-
rectly formulate the law of universal gravitation. Although his mathe-
matical description was accurate, he felt that the concept of remote
transmission of gravitational force without a supporting medium was an
absurd notion. Following Newton’s time, important contributions to
mechanics were made by Euler, D’Alembert, Lagrange, Laplace, Poinsot,
Coriolis, Einstein, and others.

Applications of Dynamics

Only since machines and structures have operated with high speeds
and appreciable accelerations has it been 'y to make calculations
based on the principles of dynamics rather than on the principles of
statics. The rapid technological developments of the present day require
inereasing application of the prineciples of mechanics, particularly dy-
namics. These principles are basic to the analysis and design of moving
structures, to fixed structures subject to shock loads, to robotic devices,
to automatic control systems, to rockets, missiles, and spacecraft, to
ground and air transportation vehicles, to electron ballistics of electrical
devices, and to machinery of all types such as turbines, pumps, recipro-
cating engines, hoists, machine tools, etc.

Students with interests in one or more of these and many other
activities will constantly need to apply the fundamental principles of
dynamics.

1/2 BAasic CONCEPTS

The concepts basic to mechanics were set forth in Art. 1/2 of Vol. I
Statics. They are summarized here along with additional comments of
special relevance to the study of dynamies.

Space is the geometric region occupied by bodies. Position in space
is determined relative to some geometric reference system by means of
linear and angular measurements. The basic frame of reference for the
laws of Newtonian mechanics is the primary inertial system or astro-
nomical frame of reference, which is an imaginary set of rectangular
axes assumed to have no translation or rotation in space. Measurements
show that the laws of Newtonian mechanics are valid for this reference
system as long as any velocities involved are negligible compared with
the speed of light, which is 300 000 km/s or 186,000 mi/sec. Measure-
ments made with respect to this reference are said to be absolute, and
this reference system may be considered “fixed” in space.

A reference frame attached to the surface of the earth has a some-
what complicated motion in the primary system, and a correction to the
basic equations of mechanies must be applied for measurements made

*The original formulations of Sir Isaac Newton may be found in the translation of his Prin-
cipia (1687), revised by F. Cajori, University of California Press, 1934
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1/1 __HisTOoRY AND MODERN APPLICATIONS

Dynamics is that branch of mechanics which deals with the motion
of bodies under the action of forces. The study of dynamics in engineer-
ing usually follows the study of statics, which deals with the effects of
forces on bodies at rest. Dynamics has two distinct parts: kinematics,
which is the study of motion without reference to the forces which cause
motion, and kinetics, which relates the action of forces on bodies to their
resulting motions. A thorough comprehension of dynamics will provide
one of the most useful and powerful tools for analysis in engineering.

History of Dynamics

Dynarmcs is a relatively recent subject compared with statics. The
ing of a rational unds of d ics is credited to Galileo
(1564-1642), who made careful observations concerning bodies in free
fall, motion on an inclined plane, and motion of the pendulum. He was

largely responsible for bringing a scienti h to the investi
of physical problems. Galileo was continually under severe criticism for
refusing to accept the established beliefs of his day, such as the philoso-
phies of Aristotle which held, for example, that heavy bodies fall more
rapidly than light bodies. The lack of accurate means for the measure-
ment of time was a severe handicap to Galileo, and further significant
in ics awaited the i ion of the dulum clock

by Huygens in 1657.

Newton (1642-1727), guided by Galileo’s work, was able to make an

Galileo Galilei

Portait of Galileo Galilei (1564-1642) (oi on canvas),
Sustermans, Justus (1587-1681) (school of)/Gelleria
At Library

accurate formulation of the laws of motion and, thus, to place d
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Article 1 Basic Concepts |

relative to the reference frame of the earth. In the calculation of rocket
and space-flight trajectories, for example, the absolute motion of the
earth becomes an important parameter. For most engineering problems
involving machines and structures which remain on the surface of the
earth, the corrections are extremely small and may be neglected. For
these problems the laws of mechanics may be applied directly with mea-
surements made relative to the earth, and in a practical sense such mea-
surements will be considered absolute.

Tirne is a measure of the succession of events and is considered an
absolute quantity in Newtonian mechanics.

Mass is the quantitative measure of the inertia or resistance to
change in motion of a body. Mass may also be considered as the quantity
of matter in a body as well as the property which gives rise to gravita-
tional attraction.

Force is the vector action of one body on another. The properties of
forces have been thoroughly treated in Vol. 1 Statics.

A particle is a body of negligible dimensions. When the dimensions
of a body are irrelevant to the description of its motion or the action of
forces on it, the body may be treated as a particle. An airplane, for ex-
ample, may be treated as a particle for the description of its flight path.

A rigid body is a body whose changes in shape are negligible com-
pared with the overall dimensions of the body or with the changes in po-
sition of the body as a whole. As an example of the assumption of
rigidity, the small flexural movement of the wing tip of an airplane fly-
ing through turbulent air is clearly of no consequence to the description
of the motion of the airplane as a whole along its flight path. For this
purpose, then, the treatment of the airplane as a rigid body is an accept-
able approximation. On the other hand, if we need to examine the inter-
nal stresses in the wing structure due to changing dynamic loads, then
the deformation characteristics of the structure would have to be exam-
ined, and for this purpose the airplane could no longer be considered a
rigid body.

Vector and scalar quantities have been treated extensively in Vol.
1 Statics, and their distinction should be perfectly clear by now. Scalar
quantities are printed in lightface italic type, and vectors are shown in
boidface type. Thus, V denotes the scalar magnitude of the vector V. It
is important that we use an identifying mark, such as an underline V,
for all handwritten vectors to take the place of the boldface designation
in print. For two nonparallel vectors recall, for example, that V; + V,
and V; + V, have two entirely different meanings.

We assume that you are familiar with the geometry and algebra of
vectors through previous study of statics and mathematics. Students
who need to review these topics will find a brief summary of them in Ap-
pendix C along with other mathematical relations which find frequent
use in mechanics. Experience has shown that the geometry of mechan-
ics is often a source of difficulty for students. Mechanics by its very na-
ture is geometrical, and students should bear this in mind as they
review their mathematics. In addition to vector algebra, dynamics re-
quires the use of vector calculus, and the essentials of this topic will be
developed in the text as they are needed.

. 1 ’ /
A O ooy e S ) Zasdl,
7~ e ‘
g 0’;}’9@6)75 Q’”j/'ob(';){' _




Dynamics involves the frequent use of time derivatives of both vec-
tors and scalars. As a notational shorthand, a dot over a symbol will fre-
quently be used to indicate a derivative with respect to time. Thus, x
means dx/dt and X stands for d%x/d¢?.

1/3 NEWTON'S LAaws

Newton’s three laws of motion, stated in Art. 1/4 of Vol. I Statics,
are restated here because of their special significance to dynamics. In
modern terminology they are:

Law I. A particle remains at rest or continues to move with uniform
velocity (in a straight line with a constant speed) if there is no unbal-
anced foree acting on it.

Law [I. The acceleration of a particle is proportional to the resul-
tant force acting on it and is in the direction of this force.*

Law Hl. The forces of action and reaction between interacting bod-
ies are equal in magnitude, opposite in direction, and collinear.

These laws have been verified by countless physical measurements.
The first two laws hold for measurements made in an absolute frame of
reference, but are subject to some correction when the motion is mea-
sured relative to a reference system having acceleration, such as one at-
tached to the surface of the earth.

Newton’s second law forms the basis for most of the analysis in dy-
namics. For a particle of mass m subjected to a resultant force F, the

law may be stated as

where a is the resulting acceleration measured in a nonaccelerating
frame of reference. Newton’s first law is a consequence of the second
law since there is no acceleration when the force is zero, and so the par-
ticle is either at rest or is moving with constant velocity. The third law
constitutes the principle of action and reaction with which you should
be thoroughly familiar from your work in statics.

1/4 Units

Both the International System of metric units (SI) and the U.S. cus-
tomary system of units are defined and used in Vol. 2 Dynamics, al-
though a stronger emphasis is placed on the metric system because it is
replacing the U.S. customary system. However, numerical conversion
from one system to the other will often be needed in U.S. engineering

*To some it is preferable to interpret Newton’s second law as meaning that the resultant
force acting on a particle is proportional to the time rate of change of momentum of the
particle and that this change is in the direction of the force. Both formulations are equally
correct when applied to a particle of constant mass.




practice for some years to come. To become familiar with each system, it
is necessary to think directly in that system. Familiarity with the new
system cannot be achieved simply by the conversion of numerical re-
sults from the old system.

Tables defining the SI units and giving numerical conversions be-
tween U.S. customary and SI units are included inside the front cover of
the book. Charts comparing selected quantities in SI and U.S. custom-
ary units are included inside the back cover of the book to facilitate con-
version and to help establish a feel for the relative size of units in both
systems.

The four fundamental quantities of mechanics, and their units and
symbols for the two systems, are summarized in the following table:

U.S. CUSTOMARY UNITS

SI UNITS
DIMENSIONAL
QUANTITY SYMBOL UNIT SYMBOL
Mass M J kilogram kg
Length L Base < meter® m
Time T units | second s
Force F newton N

UNIT

slug
Base [ foot
units {second
pound

SYMBOL

*Also spelled metre.

As shown in the table, in SI the units for mass, length, and time are
taken as base units, and the units for force are derived from Newton’s
second law of motion, Eq. 1/1. In the U.S. customary system the units
for force, length, and time are base units and the units for mass are de-
rived from the second law.

The SI system is termed an absolute system because the standard
for the base unit kilogram (a platinum-iridium cylinder kept at the In-
ternational Bureau of Standards near Paris, France) is independent of
the gravitational attraction of the earth. On the other hand, the U.S.
customary system is termed a gravitational system because the stan-
dard for the base unit pound (the weight of a standard mass located at
sea level and at a latitude of 45°) requires the presence of the gravita-
tional field of the earth. This distinction is a fundamental difference be-
tween the two systems of units.

In SI units, by definition, one newton is that force which will give a
one-kilogram mass an acceleration of one meter per second squared. In
the U.S. customary system a 32.1740-pound mass (1 slug) will have an
acceleration of one foot per second squared when acted on by a force of
one pound. Thus, for each system we have from Eq. 1/1

SI UNITS U.S. CUSTOMARY UNITS

(1 N) = (1 kg)(1 m/s?) (11b) = (1 slug)(1 ft/sec?)
N = kg-m/s® slug = Ib-sec?/ft

The standard kilogram

Courtesy Bureau International des Poids et Mesures, France




In SI units, the kilogram should be used exclusively as a unit of
mass and never force. Unfortunately, in the MKS (meter, kilogram, sec-
ond) gravitational system, which has been used in some countries for
many years, the kilogram has been commonly used both as a unit of
force and as a unit of mass.

In U.S. customary units, the pound is unfortunately used both as a
unit of force (Ibf) and as a unit of mass (Ibm). The use of the unit Ibm is
especially prevalent in the specification of the thermal properties of lig-
uids and gases. The lbm is the amount of mass which weighs 1 1bf under
standard conditions (at a latitude of 45° and at sea level). In order to
avoid the confusion which would be caused by the use of two units for
mass (slug and lbm), in this textbook we use almost exclusively the unit
slug for mass. This practice makes dynamics much simpler than if the
Ibm were used. In addition, this approach allows us to use the symbol Ib
to always mean pound force.

Additional quantities used in mechanics and their equivalent base
units will be defined as they are introduced in the chapters which follow.
However, for convenient reference these quantities are listed in one
place in the first table inside the front cover of the book.

Professional organizations have established detailed guidelines for
the consistent use of SI units, and these guidelines have been followed
throughout this book. The most essential ones are summarized inside
the front cover, and you should observe these rules carefully.

1/5 GRAVITATION

Newton’s law of gravitation, which governs the mutual attraction
between bodies, is

g

F=G (1/2)

r?

where F = the mutual force of attraction between two particles
G = a universal constant called the constant of gravitation
mj, mg = the masses of the two particles
r = the distance between the centers of the particles

The value of the gravitational constant obtained from experimental data
is G = 6.673(107 1) m3/(kg+s?). Except for some spacecraft applications,
the only gravitational force of appreciable magnitude in engineering is
the force due to the attraction of the earth. It was shown in Vol. 1 Stat-
ics, for example, that each of two iron spheres 100 mm in diameter is at-
tracted to the earth with a gravitational force of 37.1 N, which is called
its weight, but the force of mutual attraction between them if they are
Jjust touching is only 0.000 000 095 1 N,

Because the gravitational attraction or weight of a body is a force, it
should always be expressed in force units, newtons (N) in SI units and
pounds force (Ib) in U.S. customary units. To avoid confusion, the word
“weight” in this book will be restricted to mean the force of gravita-
tional attraction.




Effect of Altitude

The force of gravitational attraction of the earth on a body depends
on the position of the body relative to the earth. If the earth were a
perfect homogeneous sphere, a body with a mass of exactly 1 kg would
be attracted to the earth by a force of 9.825 N on the surface of the
earth, 9.822 N at an altitude of 1 km, 9.523 N at an altitude of 100 km,
7.340 N at an altitude of 1000 km, and 2.456 N at an altitude equal to
the mean radius of the earth, 6371 km. Thus the variation in gravita-
tional attraction of high-altitude rockets and spacecraft becomes a major
consideration.

Every object which falls in a vacuum at a given height near the sur-
face of the earth will have the same acceleration g, regardless of its
mass. This result can be obtained by combining Egs. 1/1 and 1/2 and
canceling the term representing the mass of the falling object. This com-
bination gives

Gm,
R2

g:

where m, is the mass of the earth and R is the radius of the earth.* The
mass m, and the mean radius R of the earth have been found through
experimental measurements to be 5.976(10*%) kg and 6.371(10°) m, re-
spectively. These values, together with the value of G already cited,
when substituted into the expression for g, give a mean value of g =
9.825 m/s®,

The variation of g with altitude is easily determined from the gravi-
tational law. If g, represents the absolute acceleration due to gravity at
sea level, the absolute value at an altitude % is

_ R?
where R is the radius of the earth.

Effect of a Rotating Earth

The acceleration due to gravity as determined from the gravita-
tional law is the acceleration which would be measured from a set of
axes whose origin is at the center of the earth but which does not ro-
tate with the earth. With respect to these “fixed” axes, then, this value
may be termed the absolute value of g. Because the earth rotates, the
acceleration of a freely falling body as measured from a position at-
tached to the surface of the earth is slightly less than the absolute
value.

Accurate values of the gravitational acceleration as measured rela-
tive to the surface of the earth account for the fact that the earth is a
rotating oblate spheroid with flattening at the poles. These values may

*It can be proved that the earth, when taken as a sphere with a symmetrical distribution of
mass about its center, may be considered a particle with its entire mass concentrated at its
center.




be calculated to a high degree of accuracy from the 1980 International
Gravity Formula, which is

g = 9.780 327(1 + 0.005 279 sin? y + 0.000 023 sin® y + -

where 7 is the latitude and g is expressed in meters per second squared.
The formula is based on an ellipsoidal model of the earth and also ac-
counts for the effect of the rotation of the earth.

The absolute acceleration due to gravity as determined for a nonro-
tating earth may be computed from the relative values to a close approxi-
mation by adding 3.382(10~%) cos?y m/s?, which removes the effect of the
rotation of the earth. The variation of both the absolute and the relative
values of g with latitude is shown in Fig. 1/1 for sea-level conditions.*

9.840 l i ] 1 I - 32.28
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Figure 1/1

Standard Value of g

The standard value which has been adopted internationally for the
gravitational acceleration relative to the rotating earth at sea level and
at a latitude of 45° is 9.806 65 m/s” or 32.1740 ft/sec’. This value differs
very slightly from that obtained by evaluating the International Gravity
Formula for y = 45° The reason for the small difference is that the
earth is not exactly ellipsoidal, as assumed in the formulation of the In-
ternational Gravity Formula.

The proximity of large land masses and the variations in the density
of the crust of the earth also influence the local value of g by a small but
detectable amount. In almost all engineering applications near the sur-
face of the earth, we can neglect the difference between the absolute and
relative values of the gravitational acceleration, and the effect of local

*You will be able to derive these relations for a spherical earth after studying relative mo-
tion in Chapter 3.




variations. The values of 9.81 m/s? in SI units and 32.2 ft/sec? in U.S.
customary units are used for the sea-level value of g.

Apparent Weight

The gravitational attraction of the earth on a body of mass m may
be calculated from the results of a simple gravitational experiment. The
body is allowed to fall freely in a vacuum, and its absolute acceleration is
measured. If the gravitational force of attraction or true weight of the
body is W, then, because the body falls with an absolute acceleration g,

Eq. 1/1 gives

The apparent weight of a body as determined by a spring balance,
calibrated to read the correct force and attached to the surface of the
earth, will be slightly less than its true weight. The difference is due to
the rotation of the earth. The ratio of the apparent weight to the appar-
ent or relative acceleration due to gravity still gives the correct value of
mass. The apparent weight and the relative acceleration due to gravity
are, of course, the quantities which are measured in experiments con-
ducted on the surface of the earth.

1/6 DIMENSIONS

A given dimension such as length can be expressed in a number of
different units such as meters, millimeters, or kilometers. Thus, a di-
mension is different from a unit. The principle of dimensional homogene-
ity states that all physical relations must be dimensionally homogeneous;
that is, the dimensions of all terms in an equation must be the same. It is
customary to use the symbols L, M, T', and F to stand for length, mass,
time, and force, respectively. In SI units force is a derived quantity and
from Eq. 1/1 has the dimensions of mass times acceleration or

F = ML/T?

One important use of the dimensional homogeneity principle is to
check the dimensional correctness of some derived physical relation. We
can derive the following expression for the velocity v of a body of mass m
which is moved from rest a horizontal distance x by a force F:

Fy= %mv2
where the % is a dimensionless coefficient resulting from integration.

This equation is dimensionally correct because substitution of L, M, and
T gives

IMLT2)[L] = [MILT- 1

Dimensional homogeneity is a necessary condition for correctness of
a physical relation, but it is not sufficient, since it is possible to construct
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2/1 INTRODUCTION

Kinematics is the branch of dynamics which describes the motion of
bodies without reference to the forces which either cause the motion or
are generated as a result of the motion. Kinematics is often described as
the “geometry of motion.” Some engineering applications of kinematics
include the design of cams, gears, linkages, and other machine elements
to control or produce certain desired motions, and the calculation of
flight trajectories for aircraft, rockets, and spacecraft. A thorough work-
ing knowledge of kinematics is a prerequisite to kinetics, which is the
study of the relationships between motion and the corresponding forces
which cause or accompany the motion.

Particle Motion

We begin our study of kinematics by first discussing in this chapter
the motions of points or particles. A particle is a body whose physical di-
mensions are so small compared with the radius of curvature of its path
that we may treat the motion of the particle as that of a point. For ex-
ample, the wingspan of a jet transport flying between Los Angeles and
New York is of no consequence compared with the radius of curvature of

21
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Figure 2/1

Figure 2/2

+s

its flight path, and thus the treatment of the airplane as a particle or
point is an acceptable approximation.

We can describe the motion of a particle in a number of ways, and
the choice of the most convenient or appropriate way depends a great
deal on experience and on how the data are given. Let us obtain an
overview of the several methods developed in this chapter by referring
to Fig. 2/1, which shows a particle P moving along some general path
in space. If the particle is confined to a specified path, as with a bead
sliding along a fixed wire, its motion is said to be constrained. If there
are no physical guides, the motion is said to be unconstrained. A small
rock tied to the end of a string and whirled in a circle undergoes con-
strained motion until the string breaks, after which instant its motion is
unconstrained.

Choice of Coordinates

The position of particle P at any time ¢ can be described by specify-
ing its rectangular coordinates® x, y, 2, its cylindrical coordinates r, 6, z,
or its spherical coordinates R, 6, ¢. The motion of P can also be de-
scribed by measurements along the tangent ¢ and normal n to the curve.
The direction of n lies in the local plane of the curve.” These last two
measurements are called path variables.

The motion of particles (or rigid bodies) can be described by using co-
ordinates measured from fixed reference axes (absolute-motion analysis)
or by using coordinates measured from moving reference axes (relative-
motion analysis). Both descriptions will be developed and applied in the
articles which follow.

With this conceptual picture of the description of particle motion in
mind, we restrict our attention in the first part of this chapter to the
case of plane motion where all movement occurs in or can be repre-
sented as occurring in a single plane. A large proportion of the motions
of machines and structures in engineering can be represented as plane
motion. Later, in Chapter 7, an introduction to three-dimensional mo-
tion is presented. We begin our discussion of plane motion with recti-
linear motion, which is motion along a straight line, and follow it with a
description of motion along a plane curve.

2/2 RECTILINEAR MoOTION

Consider a particle P moving along a straight line, Fig. 2/2. The po-
sition of P at any instant of time ¢ can be specified by its distance s mea-
sured from some convenient reference point O fixed on the line. At time
t + At the particle has moved to P’ and its coordinate becomes s + As.
The change in the position coordinate during the interval A¢ is called
the displacement As of the particle. The displacement would be negative
if the particle moved in the negative s-direction.

*Often called Cartesian coordinates, named after René Descartes (1596-1650), a French
mathematician who was one of the inventors of analytic geometry.

"This plane is called the osculating plane, which comes from the Latin word osculari mean-
ing “to kiss.” The plane which contains P and the two points A and B, one on either side of
P, becomes the osculating plane as the distances between the points approach zero.




Velocity and Acceleration

The average velocity of the particle during the interval At is the dis-
placement divided by the time interval or v,, = As/At. As At becomes
smaller and approaches zero in the limit, the average velocity approaches

As

the instantaneous velocity of the particle, which is v = A1} LA or

(2/1)

Thus, the velocity is the time rate of change of the position coordinate s.
The velocity is positive or negative depending on whether the corre-
sponding displacement is positive or negative.

The average acceleration of the particle during the interval A¢ is the
change in its velocity divided by the time interval or a,, = Av/Af. As At
becomes smaller and approaches zero in the limit, the average accelera-
tion approaches the instantaneous acceleration of the particle, which is

sdoa] o [Py
{a_dt vw or (a i 1 (2/2)

The acceleration is positive or negative depending on whether the ve-
locity is increasing or decreasing. Note that the acceleration would be
positive if the particle had a negative velocity which was becoming
less negative. If the particle is slowing down, the particle is said to be
decelerating.

Velocity and acceleration are actually vector quantities, as we will
see for curvilinear motion beginning with Art. 2/3. For rectilinear mo-
tion in the present article, where the direction of the motion is that of
the given straight-line path, the sense of the vector along the path is de-
scribed by a plus or minus sign. In our treatment of curvilinear motion,
we will account for the changes in direction of the velocity and accelera-
tion vectors as well as their changes in magnitude.

By eliminating the time df between Eq. 2/1 and the first of Eqs. 2/2,
we obtain a differential equation relating displacement, velocity, and ac-
celeration.* This equation is

vdv = ads or s$ds=§8ds (2/3)

Equations 2/1, 2/2, and 2/3 are the differential equations for the rec-
tilinear motion of a particle. Problems in rectilinear motion involving fi-
nite changes in the motion variables are solved by integration of these
basic differential relations. The position coordinate s, the velocity v, and
the acceleration a are algebraic quantities, so that their signs, positive
or negative, must be carefully observed. Note that the positive direc-
tions for v and a are the same as the positive direction for s.

a = lim

v
a0 At ox

*Differential quantities can be multiplied and divided in exactly the same way as other
algebraic quantities.

This sprinter will undergo rectilinear
acceleration until he reaches his ter-
minal speed.

Jim Cummings/Taxi/Getty Images
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Graphical Interpretations

Interpretation of the differential equations governing rectilinear
motion is considerably clarified by representing the relationships among
s, v, @, and ¢ graphically. Figure 2/3a is a schematic plot of the variation
of s with ¢ from time ¢, to time £, for some given rectilinear motion. By
constructing the tangent to the curve at any time ¢, we obtain the slope,
which is the velocity v = ds/dt. Thus, the velocity can be determined at
all points on the curve and plotted against the corresponding time as
shown in Fig. 2/3b. Similarly, the slope dv/dt of the v-t curve at any in-
stant gives the acceleration at that instant, and the a-¢ curve can there-
fore be plotted as in Fig. 2/3c.

We now see from Fig. 2/3b that the area under the v-f curve during
time dt is v dt, which from Eq. 2/1 is the displacement ds. Consequently,
the net displacement of the particle during the interval from ¢; to ¢, is
the corresponding area under the curve, which is

52 t2
I ds = f vdt or sy — 5, = (area under v-# curve)
LY ‘l

Similarly, from Fig. 2/3¢c we see that the area under the a-t curve during
time dt is a dt, which, from the first of Eqgs. 2/2, is dv. Thus, the net
change in velocity between ¢; and #; is the corresponding area under the
curve, which is

vy ty
f dv = f adt or vy — vy = (area under a-t curve)
v,y f

Note two additional graphical relations. When the acceleration a is
plotted as a function of the position coordinate s, Fig. 2/4a, the area
under the curve during a displacement ds is a ds, which, from Eq. 2/3, is
v dv = d(v?/2). Thus, the net area under the curve between position co-
ordinates s; and s; is

vy 52
f vdv = f ads or %(u?2 — v,%) = (area under a-s curve)
L1 S
When the velocity v is plotted as a function of the position coordinate s,
Fig. 2/4b, the slope of the curve at any point A is dv/ds. By constructing
the normal AB to the curve at this point, we see from the similar trian-
gles that CBfv = dv/ds. Thus, from Eq. 2/3, CB = v(dv/ds) = a, the accel-
eration. It is necessary that the velocity and position coordinate axes
have the same numerical scales so that the acceleration read on the po-
sition coordinate scale in meters (or feet), say, will represent the actual
acceleration in meters (or feet) per second squared.

The graphical representations described are useful not only in visu-
alizing the relationships among the several motion quantities but also in
obtaining approximate results by graphical integration or differentia-
tion. The latter case occurs when a lack of knowledge of the mathemati-
cal relationship prevents its expression as an explicit mathematical
function which can be integrated or differentiated. Experimental data
and motions which involve discontinuous relationships between the
variables are frequently analyzed graphically.




Analytical Integration

If the position coordinate s is known for all values of the time ¢,
then successive mathematical or graphical differentiation with respect
to ¢ gives the velocity v and acceleration a. In many problems, however,
the functional relationship between position coordinate and time is un-
known, and we must determine it by successive integration from the
acceleration. Acceleration is determined by the forces which act on
moving bodies and is computed from the equations of kinetics dis-
cussed in subsequent chapters. Depending on the nature of the forces,
the acceleration may be specified as a function of time, velocity, or posi-
tion coordinate, or as a combined function of these quantities. The pro-
cedure for integiating the differential equation in each case is indicated
as follows.

(a) Constant Acceleration. When a is constant, the first of Eqs. 2/2
and 2/3 can be integrated directly. For simplicity with s = s,, v = v,, and
t = 0 designated at the beginning of the interval, then for a time inter-
val ¢ the integrated equations become

v 1
jdu=afdt or v=uvyt+at
vy 0

J

Ug

vdv=afds or v? = vy? + 2a(s — s5¢)

Substitution of the integrated expression for v into Eq. 2/1 and integra-
tion with respect to ¢ give

s ¢
f ds = J’ (vg + at) dt or § =8y + vyt + %at2
S 0

These relations are necessarily restricted to the special case where the
acceleration is constant. The integration limits depend on the initial and
final conditions, which for a given problem may be different from those
used here. It may be more convenient, for instance, to begin the integra-
tion at some specified time ¢, rather than at time ¢ = 0.

Caution: The foregoing equations have been integrated
for constant acceleration only. A common mistake is to
use these equations for problems involving variable ac-
celeration, where they do not apply.

(b) Acceleration Given as a Function of Time, a = f(t). Substitu-
tion of the function into the first of Egs. 2/2 gives f(t) = dv/dt. Multiply-
ing by dt separates the variables and permits integration. Thus,

f: dv = f(: fl&)dt or v =0+ fot f) dt




From this integrated expression for v as a function of , the position co-
ordinate s is obtained by integrating Eq. 2/1, which, in form, would be

8 4 t
fds=jvdt or s=so+fudt
Sy 0 0

If the indefinite integral is employed, the end conditions are used to es-
tablish the constants of integration. The results are identical with those
obtained by using the definite integral.

If desired, the displacement s can be obtained by a direct solution of
the second-order differential equation § = f(¢) obtained by substitution
of f(¢) into the second of Egs. 2/2.

(c) Acceleration Given as a Function of Velocity, a = f(v). Substi-
tution of the function into the first of Egs. 2/2 gives f(v) = dv/dt, which
permits separating the variables and integrating. Thus,

i v
s P
‘ fo a=| fo

This result gives ¢ as a function of v. Then it would be necessary to solve
for v as a function of # so that Eq. 2/1 can be integrated to obtain the po-
sition coordinate s as a function of ¢.

Another approach is to substitute the function @ = f(v) into the first
of Eqgs. 2/3, giving v dv = f(v) ds. The variables can now be separated
and the equation integrated in the form

"vdv js “vdv
e f(v) i £ or S SO 5 f(v)

Note that this equation gives s in terms of v without explicit reference to ¢. |

(d) Acceleration Given as a Function of Displacement, a = f(s).
Substituting the function into Eq. 2/3 and integrating give the form

f: Gl f: f@ds or Pmud+2 f £(s) ds

0

Next we solve for v to give v = g(s), a function of s. Now we can substi-
tute ds/dt for v, separate variables, and integrate in the form

" ds _[* _["ds
8o 8(s) f() i = p fso g(s)

which gives ¢ as a function of s. Finally, we can rearrange to obtain s as
a function of ¢.

In each of the foregoing cases when the acceleration varies according
to some functional relationship, the possibility of solving the equations by
direct mathematical integration will depend on the form of the function.
In cases where the integration is excessively awkward or difficult, integra-
tion by graphical, numerical, or computer methods can be utilized.
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Sample Problem 2/1

The position coordinate of a particle which is confined to move along a
straight line is given by s = 2% — 24¢ + 6, where s is measured in meters from a
convenient origin and ¢ is in seconds. Determine (a) the time required for the
particle to reach a velocity of 72 m/s from its initial condition at ¢ = 0, () the ac-
celeration of the particle when v = 30 m/s, and (¢) the net displacement of the
particle during the interval from¢ = 1stof=4s.

Solution. The velocity and acceleration are obtained by successive differentia-
tion of s with respect to the time. Thus,

v =62 — 24 m/s
a = 12t m/s?

[v = 3]

[a = 0]

(a) Substituting v = 72 m/s into the expression for v gives us 72 = 6% — 24, from
which ¢ = *+4 5. The negative root describes a mathematical solution for # before

(1) the initiation of motion, so this root is of no physical interest. Thus, the desired

result is
t=4s Ans.

(b) Substituting v = 30 m/s into the expression for v gives 30 = 6/ — 24, from
which the positive root is ¢ = 3 s, and the corresponding acceleration is

a = 12(3) = 36 m/s? Ans.
(c) The net displacement during the specified interval is
As =54 — 5 or
As = [2(4%) — 24(4) + 6] — [2(1%) — 24(1) + 6]
=54m Ans.

which represents the net advancement of the particle along the s-axis from the
position it occupied at ¢ = 1 s to its position at £ = 4 s,

To help visualize the motion, the values of s, v, and a are plotted against the
time ¢ as shown. Because the area under the v-f curve represents displacement,
we see that the net displacement from ¢ = 15 to z = 4 s is the positive area Asy_y
less the negative area As; _,.

S, m

Helpful Hints

(]_\ )

@

®

Be alert to the proper choice of sign
when taking a square rool. When
the situation calls for only one an-
swer, the positive root is not always
the one you may need

Note carefully the distinction be-
tween italie s for the position coordi-
nate and the vertical ¢ for seconds,

Note from the graphs that the val-
ues for v are the slopes (5) of the s-#
curve and that the values for a are
the slopes (¢) of the v-¢ curve. Sug-
gestion: Integrate v di for each of the
two intervals and check the answer
for As. Show that the total distance
traveled during the interval ¢
tof =4sis 74 m,

1 B




Sample Problem 2/2

A particle moves along the x-axis with an initial velocity v, = 50 ft/sec at the
origin when ¢ = 0. For the first 4 seconds it has no acceleration, and thereafter it
is acted on by a retarding force which gives it a constant acceleration a, = —10
ft/sec?. Calculate the velocity and the x-coordinate of the particle for the condi-
tions of ¢ = 8 sec and ¢ = 12 sec and find the maximum positive x-coordinate
reached by the particle.

Helpful Hints

(1) Learn to be flexible with symbols.
The position coordinate x 1s just as
valid as s.

Solution. The velocity of the particle after ¢ = 4 sec is computed from

Uy t
[fdv=[adt] f dv,=—10fdt v, = 90 — 10t ft/sec
50 4

and is plotted as shown. At the specified times, the velocities are

t = 8 sec, v, = 90 — 10(8) = 10 ft/sec

t = 12 sec, v, =90 — 10(12) = —30 ft/sec Ans.
The x-coordinate of the particle at any time greater than 4 seconds is the dis-

tance traveled during the first 4 seconds plus the distance traveled after the dis-
continuity in acceleration occurred. Thus,

t
[J'ds=fudt] x=50(4)+j(90-10t)dt=-5t2+90t—80ft
4

For the two specified times,

t = 8 sec, x = —5(8% +90(8) — 80 = 320 ft

t=12sec,  x = —5(12%) + 90(12) — 80 = 280 ft Ans.
The z-coordinate for ¢ = 12 sec is less than that for ¢ = 8 sec since the motion is
in the negative x-direction after ¢ = 9 sec. The maximum positive x-coordinate is,

then, the value of x for ¢ = 9 sec which is

Xpey = —5(9%) + 90(9) — 80 = 325 ft Ans.

) These displacements are seen to be the net positive areas under the v-¢ graph up

to the values of ¢ in question.

(@) Note that we integrate to a general
time ¢ and then substitute specific

values.

(3) Show that the total distance traveled
by the particle in the 12 secis 370 ft.
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Sample Problem 2/3

The spring-mounted slider moves in the horizontal guide with negligible
friction and has a velocity vp in the s-direction as it crosses the mid-position
where s = 0 and ¢ = 0. The two springs together exert a retarding force to the
motion of the slider, which gives it an acceleration proportional to the displace-
ment but oppositely directed and equal to @ = —k?s, where k is constant. (The
constant is arbitrarily squared for later convenience in the form of the expres-
sions.) Determine the expressions for the displacement s and velocity v as func-
tions of the time £.

Solution I. Since the acceleration is specified in terms of the displacement, the
differential relation v dv = a ds may be integrated. Thus,

2 22
fvdu=f—kzsds+claconstant, or v_2_= —kTs+ G

When s = 0, v = vy, so that C; = v*/2, and the velocity becomes

= 4o =
The plus sign of the radical is taken when v is positive (in the plus s-direction).
This last expression may be integrated by substituting v = ds/d¢. Thus,

ds J' T
~—————==| dt + Cyaconstant, or sin"!™==¢+C,
f\/vu —kedt 4 k vy 4

With the requirement of ¢ = 0 when s = 0, the constant of integration becomes
Cy = 0, and we may solve the equation for s so that

v,
s= ;u sin kt Ans.

The velocity isv = §, which gives

v = v, cos kt Ans.

Solution Il. Since a = §, the given relation may be written at once as

§+k%=0

This is an ordinary linear differential equation of second order for which the so-
lution is well known and is

s = Asin Kt + B cos Kt

where A, B, and K are constants. Substitution of this expression into the differ-
ential equation shows that it satisfies the equation, provided that K = . The ve-
locity is v = §, which becomes

v = Ak cos kt — Bk sin kt

The initial condition v = vy when ¢ = 0 requires that A = vy/k, and the condition
s = 0 when ¢ = 0 gives B = 0. Thus, the solution is

Up .
s=7e—smkt and v = vy cos kt

Helpful Hints

(@) We have used an indefinite integral
here and evaluated the constant of
integration. For practice, obtain the

same results by using the definite
integral with the appropriate limits

)
T

) Again try the definite integral here
as ahove.

als

2

(A

V,2 <K

2
A

(® This motion is called simple har-
monie motion and is characteristic of

all oscillations where the restoring
force, and hence the acceleration, is

proportional to the displacement but

opposite in sign.




2/23 Small steel balls fall from rest through the opening
at A at the steady rate of two per second. Find the
vertical separation & of two consecutive balls when
the lower one has dropped 3 meters. Neglect air
resistance.

Ans. h =261m

2/29 The car is traveling at a constant speed v, = 100
km/h on the level portion of the road. When the
6-percent (tan 6§ = 6/100) incline is encountered, the
driver does not change the throttle setting and con-
sequently the car decelerates at the constant rate g
sin 6. Determine the speed of the car (a) 10 seconds
after passing point A and () when s = 100 m.

Ans. (@)v = 21.9m/s, (b) v = 25.6 m/s

o
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2/40 The cone falling with a speed vy strikes and pene-
trates the block of packing material. The accelera-
tion of the cone after impact is a = g — ¢y?, where ¢
is a positive constant and y is the penetration dis-
tance. If the maximum penetration depth is ob-
served to be ¥y, determine the constant c.
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