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(b)

Figure 2/13

We now consider the third description of plane curvilinear motion,
namely, polar coordinates where the particle is located by the radial dis-
tance  from a fixed point and by an angular measurement 6 to the ra-
dial line. Polar coordinates are particularly useful when a motion is
constrained through the control of a radial distance and an angular po-
sition or when an unconstrained motion is observed by measurements of
a radial distance and an angular position.

Figure 2/13a shows the polar coordinates r and # which Jocate a
particle traveling on a curved path. An arbitrary fixed line, such as the
1-axis, i used as a reference for the measurement of g, Unit vectors e,
and e, are established in the positive r- and 6-directions, respectively.
The position vector r to the particle at A has a magnitude equal to the
radial distance r and a direction specified by the unit vector e,. Thus,
we express the location of the particle at A by the vector

P

Time Derivatives of the Unit Vectors

To differentiate this relation with respect to time to obtain v = F and
a = v, we need expressions for the time derivatives of both unit vectors e,
and e;, We obtain €, and &, in exactly the same way we derived ¢, in the
preceding article. During time df the coordinate directions rotate through
the angle 8, and the unit vectors also rotate through the same angle
from e, and e to e, and e;, as shown in Fig, 2/13b, We note that the vec-
tor change de, is in the plus f-direction and that de; is in the minus
r-tirection. Because their magnitudes in the limit are equal to the unit
vector as radius times the angle dff in radians, we can write them as
de. = e;df and de, = —e, dfl. If we divide these equations by d6, we have

de,

o _. de,
a "’

and ﬁ =

-e,

If; on the other hand, we divide them by dt, we have de/d! = (dd/dbe,
and dey/dt = ~(dé/dt)e,, or simply

[.é,=ée, and é,,=—9'e:J (@12)

Velocity

We are now ready to differentiate r = re, with respect to time. Using
the rule for differentiating the product of a sealar and a vector gives

v=1=re +ré,

With the substitution of é, from Eq. 2/12, the vector expression for the

velocity becomes




where U.==F
vg=rt
0= Ju.E i #

The r-component of v is merely the rate at which the vector r
stretches. The #-component of v is due to the rotation of r.

Acceleration

We now differentiate the expression for v to obtain the acceleration
a = v. Note that the derivative of rfe, will produce three terms, since
all three factors are variable. Thus,

a=v= (e + ré,) + (e, + rie, + roé,

Substitution of €, and ¢, from Eq. 2/12 and collecting terms give

[a = (pF — réz)e,. + (rf + 2Fé)eaj (2/14)

where a,=F —ro?
ri + 270

e = Ja?+ ag

Qg

We can write the f-component alternatively as
1d 24
a, == (rg
" dt e

which can be verified easily by carrying out the differentiation. This
form for a, will be useful when we treat the angular momentum of par-
ticles in the next chapter.

Geometric Interpretation

The terms in Eq. 2/14 can be best understood when the geometry of
the physical changes can be clearly seen. For this purpose, Fig. 2/14a is
developed to show the velocity vectors and their r- and 8-components at
position A and at position A’ after an infinitesimal movement. Each of
these components undergoes a change in magnitude and direction as
shown in Fig. 2/14b. In this figure we see the following changes:

(a) Magnitude Change of v,. This change is simply the increase in
length of v, or dv, = dr, and the corresponding acceleration term is
dr/dt = 7 in the positive r-direction.

(b) Direction Change of v,. The magnitude of this change is seen
from the figure to be v, d6 = i df, and its contribution to the accelera-
tion becomes i d@/dt = -6 which is in the positive #-direction.

(c) Magnitude Change of v,. This term is the change in length of ®)
vy or d(r@), and its contribution to the acceleration is d(r0)/dt = r6 + 16
and is in the positive #-direction. Figure 2/14




Figure 2/15

(d) Direction Change of v,. The magnitude of this change is
v df = ré do, ar_Ld the corresponding acceleration term is observed to
be r6(df/dt) = r6? in the negative r-direction.

Collecting terms gives a, = 7 — r62 and a, = ré + 270 as obtained
previously. We see that the term 7 is the acceleration which the particle
would have along the radius in the absence of a change in 6. The term
—r62 is the normal component of acceleration if r were constant, as in
circular motion. The term ré is the tangential acceleration which the
particle would have if » were constant, but is only a part of the accelera-
tion due to the change in magnitude of vy when r is variable. Finally, the
term 276 is composed of two effects. The first effect comes from that
portion of the change in magnitude d(r6) of v, due to the change in r,
and the second effect comes from the change in direction of v,. The term
218 represents, therefore, a combination of changes and is not so easily
perceived as are the other acceleration terms.

Note the difference between the vector change dv, in v, and the
change dv, in the magnitude of v,. Similarly, the vector change dv, is
not the same as the change dvg in the magnitude of vy. When we divide
these changes by dtf to obtain expressions for the derivatives, we see
clearly that the magnitude of the derivative |dv,/df| and the derivative of
the magnitude dv./dtf are not the same. Note also that a, is not ¢, and
that a4 is not 0,

The total acceleration a and its components are represented in Fig.
2/15. If a has a component normal to the path, we know from our analy-
sis of n- and f-components in Art. 2/5 that the sense of the n-component
must be toward the center of curvature.

Circular Motion

For motion in a circular path with r constant, the components of
Eqgs. 2/13 and 2/14 become simply

v,=0 v3=r9

a, = —ré2 ag=ré
This description is the same as that obtained with n- and ¢-components,
where the 6- and ¢-directions coincide but the positive r-direction is in
the negative n-direction. Thus, a, = —a, for circular motion centered at
the origin of the polar coordinates.

The expressions for ¢, and a;, in sealar form can also be obtained by
direct differentiation of the coordinate relations x = r cos @ andy = rsin 6
to obtain @, = X and a, = y. Each of these rectangular components of ac-
celeration can then be resolved into r- and @-components which, when
combined, will yield the expressions of Eq. 2/14.
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Sample Problem 2/9

Rotation of the radially slotted arm is governed by 6 = 0.2¢ + 0.02t3, where
6 is in radians and ¢ is in seconds. Simultaneously, the power screw in the arm
engages the slider B and controls its distance from O according to r = 0.2 +
0.04¢2, where r is in meters and £ is in seconds. Calculate the magnitudes of the
velocity and acceleration of the slider for the instant when ¢ = 3 s,

Solution. The coordinates and their time derivatives which appear in the ex-
pressions for velocity and acceleration in polar coordinates are obtained first and
evaluated for ¢t = 3 s.

r= 0.2+ 0.04;2 rg =02+ 0.04(3%) = 056 m

7 = 0.08¢ F3 = 0.08(3)= 0.24 m/s

P =0.08 75 = 0.08 m/s?

0 =0.2t+ 0022 63=0.2(3) + 0.02(3%) = 1.14 rad
or f; = 1.14(180/7) = 65.3°

6 =02+0.062 65=0.2+ 0.06(3) = 0.74 rad/s

6 =012 4 =0.12(3) = 0.36 rad/s2

The velocity components are obtained from Eq. 2/13 and for ¢ = 3 s are

v, =Fl v, = 0.24 m/s
[vy = ré] v, = 0.56(0.74) = 0.414 m/s
v =v,2+ v,2 v = /(0.24)? + (0.414)% = 0.479 m/s Ans.

/
/
.

o =0.601 m/s? I o

~

v=0479m/s

N

vg=0.414 m/s

r=0.56 m

6 =65.3"

el

a, = 0.557 m/s?

—

.

\‘!B

]:-',. =024 m/s
B

/;, =-0.227 m/s?
4 = 65.3°

The velocity and its components are shown for the specified position of the arm.
The acceleration components are obtained from Eq. 2/14 and for ¢ = 3 s are |
o
[a, = 7 —r6?] a, = 0.08 — 0.56(0.74)2 = —0.227 m/s?
[a; = ré +2r6] a, = 0.56(0.36) + 2(0.24)(0.74) = 0.557 m/s? 1
o = Ja,* + ay?l @ = (-0.227)% + (0.557)2 = 0.601 m/s? Ans. t=3s
|
The acceleration and its components are also shown for the 65.3° po- 0.5 / \
sition of the arm. / r=056m |3
Plotted in the final figure is the path of the slider B over the time y m il 6520
interval 0 = ¢ = 5 s. This plot is generated by varying ¢ in the given ex- G o> By
pressions for r and 6. Conversion from polar to rectangular coordinates 0 '
is given by i
t=
x=rcosf y=rsing _0_5!$=5E
-1.5 =1 -0.5 0 0.5
X, m

Helpful Hint

(1) We
ter B of the slider is mechanically constrained by the rotation of the slotted
arm and by engagement with the turning screw.

ee that this problem is an example of constrained motion where the cen-
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Sample Problem 2/10

A tracking radar lies in the vertical plane of the path of a rocket which is
coasting in unpowered flight above the atmosphere. For the instant when 8 =
30°, the tracking data give r = 25(10%) ft, 7 = 4000 ft/sec, and § = 0.80 deg/sec.
The acceleration of the rocket is due only to gravitational attraction and for its
particular altitude is 31.4 ft/sec? vertically down. For these conditions determine
the velocity v of the rocket and the values of 7 and §.

Solution. The components of velocity from Eq. 2/13 are

[v, = r] v, = 4000 ft/sec
fvg=rél vg = 25(10‘“(0.80)(&) = 3490 ft/sec
v= Ju,2 + v v = J(4000)% + (3490)% = 5310 ft/sec Ans.

Since the total acceleration of the rocket is g = 31.4 ft/sec’ down, we can
easily find its r- and #-components for the given position. As shown in the figure,
they are

a, = —31.4 cos 30° = —27.2 ft/sec®
ay = 31.4 sin 80° = 15.70 ft/sec?

We now equate these values to the polar-coordinate expressions for a, and a4
which contain the unknowns 7 and 6. Thus, from Eq. 2/14

2

- rpE 979 =5 " i
la, = F — ré? 27.2 = 7 ~ 25(10 }(0.80 180)
7 = 21.5 ft/sec? Ans.

lap=r6 +2r6]  15.70 = 25(1096 + 2(4000)(0.30 1_;6)

f = —3.84(10~%) rad/sec? Ans.
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v, = 4000 ft /sec

Helpful Hints

(1) We observe that the angle # in polar
coordinates need not always be taken
positive in a counterclockwise sense.

(2) Note that the r-component of accel-
eration is in the negative r-direction,
50 it carries a minus sign.

o T 4

(3) We must be careful to convert # from

deg/sec to rad/sec.
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2/139 The boom UAB pivots about point O, while section ) <
AB simultaneously extends from within section « r s V
OA. Determine the velocity and acceleration of the N
center B of the pulley for the following conditions: & = 2 o ’])9 = ©
f = 20° § = 5 deg/sec, é = 2 degisec?, | = Tft, i = < ..
L5 ftfsec, | = —4 fi/sec®. The quantities / and [ (9 ;SIC/Q(%QC O=Y -

are the first and second time derivatives,
tively, of the length [ of section AB.
Ans.v = 1.5e, + 2.71e, ft/sec
a = —4.24e, + 1.3dde, ft/sec
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2/147 The rocket is fired vertically and tracked by the
radar station shown. When # reaches 60°, other
corresponding measurements give the values r =
30,000 ft, 7 = 70 ft/sec’, and 6 = 0.02 rad/sec. Cal-
culate the magnitudes of the velocity and accelera-
tion of the rocket at this position.

Ans. v = 1200 ft/sec, a = 67.0 ft/sec?
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2/151 Link AB rotates through a limited range of the
angle B, and its end A causes the slotted link AC to
rotate also. For the instant represented where g =
60° and B = 0.6 rad/s constant, determine the cor-
responding values of 7, 7, 6, and 6. Make use of
Egs. 2/13 and 2/14.

Ans. 7 = 77.9 mm/s, # = —13.5 mm/s®
6 =—-03radls, 6 =0




2/137 Motion of the sliding block P in the rotating radial
slot is controlled by the power screw as shown. For

! i ! <

the instant represented, # = 0.1 rad/s, § = —0.4 ,1)

rad/s?, and r = 300 mm. Also, the screw turns at a r= v .

constant speed giving # = 40 mm/s. For this in-

stant, determine the magnitudes of the velocity v ’1)9 ={C 2
and acceleration a of P. Sketch v and a if 6 = 120°. o} = (r _ (‘8

Ans. v = 50 mm/s, @ = 5 mm/s?
Og = rg+2C 0

G=ol r“déec
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